
3 The Digital Darkroom

Computers wor k with numbers, not pictures. To get a computer to wor k on a
picture we have to find a way to represent the image in numbers. For tunately,
the first thing that comes to mind turns out to be perfectly wor kable: think of
the picture as a big array of dots and assign a value to each dot to represent
its brightness. We will stick to black-and-white images here. For color images
the same principles apply. We would use three brightness values per dot: one
for each of the primar y colors red, green, and blue. Two questions that
remain are: How many dots (pixels) do we need, and how large a value
should be used to define each dot?

From Pictures to Numbers

Let’s star t with the basics. Photographic film, say 35mm black-and-white film,
has an exposure range in the order of 1:256 and a resolving power of roughly
4000 dots per inch. For photographic paper the numbers are somewhat
lower, on the order of 1000 dots per inch resolution and a brightness range of
1:30, but for now let us use the quality of the film storing the original image as
a reference. To store a brightness value between 0 and 255 we need an 8-bit
number (28 equals 256), quite happily the size of a byte on most machines.
So, one part of the problem is easily solved: each dot in the image to be digi-
tized can be stored in one byte of memory. One frame on a 35mm film mea-
sures 24×36mm or roughly 0.9×1.4 inches. If we digitize the frame at 4000
dots per inch, each frame will produce 0.9×4000×1.4×4000 numbers, which
corresponds to some 20 megabytes of data. But this is only part of the story.

The negative holds enough infor mation to allow us to make enlargements on
photographic paper at an acceptable resolution. If we enlarge the 24×36mm

15

16 BEYOND PHOTOGRAPHY CHAPTER 3

frame five times, the effective resolution of the enlargement drops from 4000
dots per inch on the film to 800 dots per inch on the print. Another reference
is the resolving power of the eye . After all, the image only needs to have a
cer tain resolution to make the dots invisible to the eye . How many dots can
we distinguish on a print? The resolving power of a human eye is approxi-
mately 1/60 of a degree, which means that even under optimal conditions we
cannot resolve more than about 600 dots per inch at a viewing distance of 12
inches. An image digitized and reproduced at 600 dots per inch is indistin-
guishable from the original under normal viewing conditions. Most of the pho-
tos in this book were digitized at 750 dots per inch. Just for comparison, the
resolution of a television image is less than 500 by 500 dots, which on a 15
inch diagonal screen corresponds to about 47 dots per inch.

Z Is for White

To make it easier to talk about digitized images and image transfor mations,
we will introduce some shorthand. Let’s stick to the analogy of a picture as a
two-dimensional array of dots. Each dot then has three attributes: one num-
ber defining its brightness and two other numbers defining its location in the
array (and in the image). Since we will use these three numbers quite exten-
sively, I will give them names. There is nothing special about these names:
they are just shorthand. The two numbers defining the location of a dot within
a picture will be named x and y and the brightness of the dot can be called z .

(x,y)

z
X

Y

picture

The Sampling Grid

The dots are really ‘‘samples’’ of the brightness in the real image. The (x , y)
gr id is therefore sometimes referred to as the ‘‘sampling grid.’’

For a given picture the x , y , and z are of course not independent. Given the
first two, the last one is determined: z is a function of x and y . The value of z
at position (x , y) in some image named picture is written as

picture[x , y].

It is convenient to introduce symbols for the maximum values of the three
numbers just named. The picture width in dots is named X . The x coordi-
nate ranges in value from 0 to X − 1. Similarly, Y is the picture height. The y
coordinate ranges from 0 to Y − 1. Z , finally, defines the maximum brightness
value of the dots. If we use one byte per dot, Z will be 255, and z can have a

CHAPTER 3 THE DIGITAL DARKROOM 17

value between 0 and 255. X and Y may tur n out to be 512 or 1024, depend-
ing on the size of the picture and the resolution at which it was scanned, but
the precise values are largely irrelevant from this point on. A low value for z
means a low brightness (dark) and a high value is a high brightness (light). A
low value for x refers to the left side of the image and a low value for y refers
to the top.

A Picture Transformation Language

Given sufficient resolution, any image can be translated into numbers and
those numbers can be translated back into an image. Our purpose here is to
find a simple way to descr ibe images and image transfor mations. To do that
we are developing a little language that consists of symbols like the x , y , and
z introduced above , and some transfor mation expressions. Two symbols that
come in handy for defining transfor mations are old and new . We use the first
to refer to the result of the last transfor mation perfor med. The second symbol,
new , refers to the destination of the current transfor mation: the newly created
image. We can also refer to specific dots in the old or new image by writing
old [x , y] and new [x , y], where x and y are as defined above . So, using only
the symbols introduced so far, we can create a picture by writing in this lan-
guage:

new [x , y] = x + y (3.1)

The expression defines a brightness x + y of the image new for each dot at
position (x , y). It may confuse you that a location is translated into a bright-
ness, but that’s exactly what we are doing! The expression x + y produces a
number and all numbers together define an image. But there’s a catch. The
br ightness value of the dots in the new image is restricted to values between
0 and Z , but the maximum value of x + y can of course be much larger than
Z . If dots are stored in bytes, the values assigned will wrap around the maxi-
mum value Z . If we want we can make this effect explicit by using modulo
ar ithmetic. If x + y ≥ Z + 1, we subtract Z + 1 as often as necessary from
x + y to get a value that fits the range. So, a brightness value Z remains Z ,

18 BEYOND PHOTOGRAPHY CHAPTER 3

but Z + 1 becomes 0, and 3∗ Z + 12 becomes 9. The value of an expression
E taken modulo-Z is usually written as E %Z . As a var iation on (3.1) we can
tr y:

(3.2) (3.3)

new [x , y] = (x ∗ y)%(Z + 1) (3.2)

The modulo operator % will come back a few more times below. For now, just
remember that all brightness values are by default modulo Z + 1. The range
of available brightness values can be matched precisely to the grid:

new [x , y] = (Z ∗ x ∗ y)/((X − 1)∗ (Y − 1)) (3.3)

In the upper left-hand corner both x and y are zero and thus the brightness z
at new [0, 0] will be zero, or solidly black. In the lower right-hand corner
x ∗ y = (X − 1)∗ (Y − 1) and z reaches its maximum value Z : white.

But why do only things that make sense? We just talked about the modulo
operator %, so let’s try something like

new [x , y] = x %y (3.4)

CHAPTER 3 THE DIGITAL DARKROOM 19

Where x is smaller than y (the lower left triangle) the picture could as well
have been defined as new [x , y] = x , which, since dots are stored in bytes, is
inter preted as new [x , y] = x %(Z + 1). Note that you can tell from the picture
what the current values for X and Y are, given that Z = 255.

Trigonometr y Made Pretty

If we also include trigonometr ic functions in our picture language, we can
really start exper imenting. Let sin(a) be the sine function that returns a value
between +1.0 and −1.0. Its argument a is an angle given in degrees. Try to
explain the patterns defined by

(3.5) (3.6)

new [x , y] = y + (sin(x)∗ Z)/2 (3.5)

and, with atan(y , x) retur ning the arc-tangent of y /x in degrees,

new [x , y] = (atan(y −Y /2, x − X /2)∗ Z)/360 (3.6)

The possibilities for creating intricate patterns with random mathematical func-
tions are endless. With some effor t you can even find pictorial representa-
tions for interesting mathematical theorems.

Conditional Transformations

It is time to add a little more power to our expression language. We will use
the notation

(condition)?yes: no

to mean that if the condition is true (or nonzero), the transfor mation is defined
by expression yes, otherwise it is defined by no. So, trivially,

new [x , y] = (0)?Z : 0 (3.7)

defines an all-black image, and

new [x , y] = (Z > 0)?old [x , y]: 0 (3.8)

20 BEYOND PHOTOGRAPHY CHAPTER 3

has no effect whatsoever (the condition always holds). Note also that ‘‘trans-
formation’’ (3.7) is independent of x and y coordinates: it defines the same
new brightness value Z for every dot in the image, independent of its location.

Between the lines you have already been sold on the idea that an image (old)
can be used in a transfor mation just as easily as an expression. We will
explore this in more detail in the section titled Geometr ic Tr ansfor mations.

Using the modulo operator and conditional transfor mations, we can define
interesting patterns with one-liners such as the following two.

(3.9) (3.10)
new [x , y] = ((x %(5 + y /25)) > 5)?0: Z (3.9)

new [x , y] = (Z ∗ abs(x %sin(y)) > 10)?0: Z (3.10)

There is again an infinite number of var iations on this theme. We can, for
instance, try to make a composite of two photos, using some mathematical
function, or even the brightness of a third photo in the conditional.

Polar Coordinates

Now let us slightly change the rules of this game. All expressions that we
have invented so far used the symbols x and y . The x and the y were
defined as Cartesian coordinates in the image array. We can also consider
the image area as a simple two-dimensional plane with an arbitrar y coordi-
nate system for locating the individual dots.

We can, for instance, define a polar coordinate system, with the origin in the
middle, and again two numbers to find the location of dots relative to the ori-
gin. We name the polar coordinates r and a. The radius r is the distance of a
dot from the origin, and a is the angle between a line from the dot to the origin
and a fixed, but otherwise arbitrar y, line through the origin.

CHAPTER 3 THE DIGITAL DARKROOM 21

(0,0)

(0,0)

x

y
r

a

Car tesian Polar
Coordinates Coordinates

We can again introduce a special shorthand R for the maximum radius and a
shor thand A for the maximum angle (360o). The or igin of the polar coordinate
system is (X /2,Y /2) in Cartesian coordinates, and similarly, the origin of the
Car tesian coordinate system is (R , 3∗ A/8) in polar coordinates.

Now it is easy to make the picture

(3.11) (3.12)

new [r , a] = (Z ∗ r)/R (3.11)

or the more inspiring

new [r , a] = (((a + r)%16) − 8)∗ Z /16 + Z /2 (3.12)

But enough said about these artificial images. The expressions that we used
to calculate brightness values above can also be used to calculate a malicious
defor mation of an existing image: It’s time to try our hand at some real image
transfor mations.

22 BEYOND PHOTOGRAPHY CHAPTER 3

Point Processes

Image transfor mations come in a number of flavors. We can, for instance, dis-
tinguish between point processes, area processes, and frame processes. A
transfor mation that assigns new brightness values to individual dots, using
only the old brightness value of a dot, is called a point process. A simple
point process is

new [x , y] = Z − old [x , y] (3.13)

which makes a negative by subtracting each dot from the maximum bright-
ness value Z . Another example is

new [x , y] = Z ∗ log (old [x , y])/log (Z) (3.14)

This particular transfor mation can be used as part of a correction filter to cope
with the ‘‘nonlinear ity’’ of devices such as scanners and display monitors: the
tendency to lose detail in the dark areas of the picture. The above transfor-
mation corrects for nonlinearity by boosting the values of the darker pixels
with a logarithmic function.

We can also simulate the effect of photographic ‘‘solar ization’’ with a point pro-
cess. The solarization effect was discovered by Armand Sabattier in 1860. If,
in a conventional darkroom, a partly developed image is exposed to raw light,
the previously unexposed areas turn from positive to negative, but the previ-
ously exposed areas remain as they are. We can simulate this effect with the
following transfor mation, applied here to a portrait of Jim McKie.

new [x , y] = (old [x , y] < Z /2)?Z − old [x , y]:old [x , y] (3.15)

We can also slowly fade in a solarization effect from left to right, for instance
with:

(3.15) (3.16)

new [x , y] =
(old [x , y] > (Z * x)/(2 * X))?old [x , y]: Z − old [x , y] (3.16)

Or we could use the brightness values of one portrait to solarize another. A

CHAPTER 3 THE DIGITAL DARKROOM 23

point process can also be used to enhance or reduce contrast in a photo.
Using conditional expressions we can also apply these changes to only spe-
cific parts of a picture.

Area Processes

If not just the old brightness value of the dot itself is used, but values of the
dots in a small area around it, the point process becomes an area process.
An image can be blurred a little by calculating the average brightness value of
each dot and four of its neighbors.

(3.17) (3.18)

new [x , y] = (old [x , y] +
old [x − 1, y] + old [x + 1, y] + old [x , y − 1] + old [x , y + 1])/5 (3.17)

The blurr ing can be applied to a larger area surrounding each pixel (as shown
in Chapter 6) to enhance the effect. Or, using polar coordinates, the amount
of blurr ing can be var ied with the radius to simulate the soft-focus effect of an
old lens.

If we can blur an image by adding neighbor ing dots to each pixel and normal-
izing, imagine what would happen if we subtract the brightness values of
neighbor ing dots from each pixel. With the right normalization again we can
wr ite this as follows.

new [x , y] = 5∗ old [x , y] −
old [x − 1, y] − old [x + 1, y] − old [x , y − 1] − old [x , y + 1] (3.18)

The effect of the transfor mation is a digital filtering that wor ks as though it
restored the focus in a blurr y image. For mally, the process approximates the
working of a Laplacian filter ∇ 2.

Another example of an area process is this one to make a relief. The transfor-
mation is useful in more serious image processing applications as a fast edge
detection filter, illustrated here with a portrait of Brian Redman.

24 BEYOND PHOTOGRAPHY CHAPTER 3

new [x , y] = old [x , y] + (Z /2 − old [x + 2, y + 2]) (3.19)

Geometric Transformations

With a third type of transfor mation we can define geometric transfor mations to
the sampling grid and change the coordinates of the dots in an image. The
standard mapping defines a regular grid of dots. Geometr ic transfor mations
are used to reshape that grid. If the portrait of Brian Redman is stored in an
array named ber , we can write

(3.20) (3.21)

new [x , y] = ber [x , y] (3.20)

which is the normal photo on the standard grid with each dot at location (x , y)
in ber mapped to a new dot at precisely the same location in the new image.
This is still a point process. But we can play more interesting games with the
picture. For instance,

new [x , y] = ber [x , Y − y] (3.21)

CHAPTER 3 THE DIGITAL DARKROOM 25

tur ns the picture upside down, by rev ersing the y coordinate in the grid. And,
only slightly more complicated,

(3.22) (3.23)

new [x , y] = ber [y , X − x] (3.22)

rotates the image by 90o clockwise. The x and y coordinates are swapped,
and the order of the x is reversed. Reversing the order of y instead of x
makes the image rotate counterclockwise.

We are still using all the dots in the old image to create the new one. We can
also break that rule and try something like

new [x , y] = ber [x /2, y] (3.23)

to stretch the image horizontally by a factor of 2. This stretching operation
can be made more interesting still by using arbitrar y tr igonometr ic functions to
calculate the offset, or by stretching both the x and y coordinates. Note also
that

new [x , y] = old [x ∗ 2, y ∗ 2] (3.24)

is a simple way to shr ink an image. How ever, to avoid having the coordinates
overflow their maxima and cause havoc, it is more prudent to write either

new [x , y] = old [(x ∗ 2)%(X + 1), (y ∗ 2)%(Y + 1)] (3.25)

or

new [x , y] = (x ≤ X /2&&y ≤ Y /2)?old [x ∗ 2, y ∗ 2]: 0 (3.26)

The most rewarding geometric transfor mations on portraits are made with
conditional expressions. We can, for example, make a perfect mirror compos-
ite of a portrait, once it is centered properly. These transfor mations

new [x , y] = (x >= X /2)?bwk [x , y]: bwk [X − x , y] (3.27)

26 BEYOND PHOTOGRAPHY CHAPTER 3

(3.27) (3.28)

new [x , y] = (x < X /2)?bwk [x , y]: bwk [X − x , y] (3.28)

are two different ways to mirror a portrait of Brian Ker nighan vertically along
its middle axis. Of course, even more startling effects can be produced by
mirror ing along a horizontal axis.

If we can do all this with a single image, imagine what could be done with two
or more! Let’s see how we could use the portraits of Rob Pike and Peter
Weinberger. Here they are first shown in their original, unedited, version.

Rob Pike Peter Weinberger

CHAPTER 3 THE DIGITAL DARKROOM 27

Frame Processes

Tr ansfor mations that wor k on multiple images are called frame processes.
Suppose we have the portraits of Rob Pike and Peter Weinberger stored in
two image files named rob and pjw . An average of the two is quickly defined,
though not ver y inspir ing.

(3.29) (3.30)

new [x , y] = (rob[x , y] + pjw [x , y])/2 (3.29)

All we have to do is add the pictures and divide by 2. We can also fade one
picture slowly into the other, which makes for a more interesting picture. A
first attempt might be a full linear fade.

new [x , y] = (x ∗ rob[x , y] + (X − x)∗ pjw [x , y])/X (3.30)

But that doesn’t really wor k out too well. If we restr ict the fade to just the mid-
dle part of the image, it looks better. The transfor mation expression we need
must have a different effect in three different areas of the image: left, middle,
and right. We can use a conditional transfor mation again to accomplish this,
but note that we need more than one condition this time. We can do that with
a nested conditional as follows.

(left)?pjw : (right)?rob: fade

The last part

(right)?rob: fade

is treated as a separate transfor mation expression that takes effect only when
the condition (right) of the first expression is false. Transfor mation (3.31)
shows the details.

new [x , y] = (x < X /3)?pjw : (x > 2∗ X /3)?rob
: ((x − X /3)∗ rob + (2∗ X /3 − x)∗ pjw)∗ 3/X (3.31)

We can also do this transfor mation in a ver tical plane, and use two, more
carefully selected, portraits, to achieve the following effect (admittedly, the

28 BEYOND PHOTOGRAPHY CHAPTER 3

resulting photo was touched up a little with a separate editor).

(3.31) (3.32)

new [x , y] = (y < Y /3)?ber : (y > 2∗Y /3)?skull
: ((y −Y /3)∗ skull + (2∗Y /3 − y)∗ ber)∗ 3/Y (3.32)

Again, nothing prevents us from exper imenting at length with even less useful
compositions. We can, for instance, use the brightness of an image in the
conditional,

(3.33) (3.34)

new [x , y] = (rob[x , y] > Z /2)?rob[x , y]: pjw [x , y] (3.33)

or play more involved tricks with the coordinates

new [x , y] = rob[x + (X ∗ cos(((x −C)∗ A)∗ 2/X))/6, y] (3.34)

where A is the maximum angle 360, and C is a constant. In this case X was
684 and C was 512.

CHAPTER 3 THE DIGITAL DARKROOM 29

And There’s More

Well, we have now set the stage for more interesting wor k. What follows in
Chapter 4 is a selection of the most startling image transfor mations we hap-
pened upon while playing with this picture language. Chapter 5 includes a
discussion of some software that can be used to build an image editor to
exper iment fur ther with these transfor mations on a home computer. Chapter
6 gives an overview of the image transfor mations that we have discussed.

