
6 Catalogue of Transformations

We conclude with a list of image transfor mations in the picture language for
popi. We make full use of the defaults for indexing, so old [x , y] is abbreviated
to old , and a default assignment new [x , y] = is always omitted. Most of the
transfor mations were illustrated in Chapters 3 and 4. At the completion of
each command, or sequence of commands, listed here the edit buffer will
contain the required image. The last few examples are transfor mations that
are harder to express in popi, but that can be added as user-defined routines,
as shown in Chapter 5 (see Adding a Display Routine).

Making a Negative

Z-old

Logarithmic Correction

Z∗ log(old)/log(Z)

Simulated Solarization

(old > Z/2) ? Z-old : old

Contrast Expansion and Normalization

(Z*(old-L))/(H-L) Assumes brightness values in the range L to H .

Focus Restoration

5∗ old-old[x-1,y]-old[x+1,y]-old[x,y-1]-old[x,y+1]

109

110 BEYOND PHOTOGRAPHY CHAPTER 6

Blurring

(old[x-2,y-2]+old[x-1,y-2]+old[x,y-2]+old[x+1,y-2]+
old[x-2,y-1]+old[x-1,y-1]+old[x,y-1]+old[x+1,y-1]+
old[x-2,y]+old[x-1,y]+old[x,y]+old[x+1,y]+
old[x-2,y+1]+old[x-1,y+1]+old[x,y+1]+old[x+1,y+1])/16

Enlarging by an Integ er Factor

(x<X/5 && y<Y/5) ? old[x∗ 5,y∗ 5] : 0 Enlarges by a factor of 5

Shrinking by an Integ er Factor

old[x/3,y/3] Shr inks by a factor of 3

Mirroring

old[X-x,y]

Turning the Picture Upside Down

old[x,Y-y]

Rotating by 90o Clockwise

old[y,X-x]

Rotating by 90o Counterclockwise

old[Y-y,x]

Averaging Three Images

(one+two+three)/3

Weighted Average

(W1∗ one+W2∗ two+W3∗ three)/(W1+W2+W3) Weight factors: W1, W2, W3

Relief

old-old[x+2,y+2]

Arbitrar y Grid Transforms

See Chapter 4, photos 10, 11, and 13.

old[x+(64-(old%16)∗ (old%16))/8, y+(64-(old/16)∗ (old/16))/8]
oldˆ(old∗ (128-(x-128)∗ (x-128)-(y-128)∗ (y-128)))>>17
old[x+(x%32)-16, y]

Transforms Using Trigonometric Functions

See Chapter 4, photo 12, and Chapter 3, expression 3.35.

CHAPTER 6 CATALOGUE OF TRANSFORMATIONS 111

old[x+sin(X∗ x/4)∗ X/8, y+sin(Y∗ y/4)∗ Y/8]
old[x+(X∗ cos(((x-X/2)∗ A)∗ 2/X))/6, y]

Transforms Using Polar Coordinates

See Chapter 4, photos 1, 6, 8, 13, 14, and 19.

old[sqrt(r∗ R), a]
old[r, a+r/3]
old[x(a) ∗ X/A, y(r) ∗ Y/R]
old[x+((a+r/10)%32)-16, y]
old[(r∗ r)/R, a]
old[r, a+old[r,a]/8]

Composites with Mattes

Straight composites of images, without averaging or fading, can be made in a
number of different ways. In the examples below we use two images, named
I1 and I2, and the corresponding mattes, M1 and M2. Assume that the
images have the same background (e.g. portraits against a plain white back-
ground). At each point in the final image either I1 or I2 will be visible. All mat-
tes are zero within the image area they define and Z outside of it. This type
of image compositing is called the ‘‘Por ter-Duff algebra.’’

(!M1)?I1:I2 I1 over I2
(!M2)?I2:I1 I2 over I1
(!M1&&!M2)?I1:0 I1 inside I2
(!M1&&!M2)?I2:0 I2 inside I1
(!M1&&!M2)?0:I1 I1 outside I2
(!M1&&!M2)?0:I2 I2 outside I1
(!M1&&!M2)?I1:I2 I1 atop I2
(!M1&&!M2)?I2:I1 I2 atop I1

The expressions are for non-blurred mattes (cf. Chapter 4 photo 3).

Arbitrar y Composites

See Chapter 3, expressions 3.15, 3.28, 3.31, 3.32, and 3.33.

(one[x,y] > Z/2) ? one[x,y] : two[x,y]
(x>X/2)? old : old[X-x,y]
(x∗ two[x,y] + (X-x)∗ one[x,y])/X
(x<X/3)?two:(x>2∗ X/3)?one:((x-X/3)∗ one+(2∗ X/3-x)∗ two)∗ 3/X
(y<Y/3)?two:(y>2∗ Y/3)?one:((y-Y/3)∗ one+(2∗ Y/3-y)∗ two)∗ 3/Y

Plotting a Grid

(x%7>1)?(y%7>1)?0:Z:Z Evenly spaced, thick white lines.
(x%7)?(y%7)?0:x/2:x/2 Thinner grid, fading from left to right.

Routine-1: Oil Transfer

An example librar y routine that can be linked with the image editor. This par-
ticular transfor mation was used for Chapter 4, photo 7. We will use the macro
definitions for New and Old in also the other routines that are listed here.

112 BEYOND PHOTOGRAPHY CHAPTER 6

#define N 3
#define New src[CURNEW].pix
#define Old src[CUROLD].pix

oil()
{ register int x, y;

register int dx, dy, mfp;
int histo[256];

for (y = N; y < DEF_Y-N; y++)
for (x = N; x < DEF_X-N; x++)
{ for (dx = 0; dx < 256; dx++)

histo[dx] = 0;

for (dy = y-N; dy <= y+N; dy++)
for (dx = x-N; dx <= x+N; dx++)

histo[Old[dy][dx]]++;

for (dx = dy = 0; dx < 256; dx++)
if (histo[dx] > dy)
{ dy = histo[dx];

mfp = dx;
}

New[y][x] = mfp;
} }

Note that the values in array histo can be updated faster if you avoid counting
the same pixels more than once in a single sweep across the width of the
image.

Routine-2: Picture Shear

See Chapter 4, photo 2. The routine uses a standard librar y function rand ()
to draw random numbers.

shear()
{ register int x, y, r;

int dx, dy, yshift[DEF_X];

for (x = r = 0; x < DEF_X; x++)
{ if (rand()%256 < 128)

r--;
else

r++;
yshift[x] = r;

}

for (y = 0; y < DEF_Y; y++)
{ if (rand()%256 < 128)

r--;
else

r++;

CHAPTER 6 CATALOGUE OF TRANSFORMATIONS 113

for (x = 0; x < DEF_X; x++)
{ dx = x+r; dy = y+yshift[x];

if (dx >= DEF_X || dy >= DEF_Y
|| dx < 0 || dy < 0)

continue;
New[y][x] = Old[dy][dx];

} } }

Routine-3: Slicing

See Chapter 4, photo 9. For the definitions of New and Old see Routine-1.

slicer()
{ register int x, y, r;

int dx, dy, xshift[DEF_Y], yshift[DEF_X];

for (x = dx = 0; x < DEF_X; x++)
{ if (dx == 0)

{ r = (rand()&63)-32;
dx = 8+rand()&31;

} else
dx--;

yshift[x] = r;
}
for (y = dy = 0; y < DEF_Y; y++)
{ if (dy == 0)

{ r = (rand()&63)-32;
dy = 8+rand()&31;

} else
dy--;

xshift[y] = r;
}

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)
{ dx = x+xshift[y]; dy = y+yshift[x];

if (dx < DEF_X && dy < DEF_Y
&& dx >= 0 && dy >= 0)

New[y][x] = Old[dy][dx];
} }

Routine-4: Tiling

See also Chapter 4, photo 15. The routine can be made more interesting by
also randomly var ying the size of the tiles.

#define T 25 /* tile size */

tiling()
{ register int x, y, dx, dy;

int ox, oy, nx, ny;

114 BEYOND PHOTOGRAPHY CHAPTER 6

for (y = 0; y < DEF_Y-T; y += T)
for (x = 0; x < DEF_X-T; x += T)
{ ox = (rand()&31)-16; /* displacement */

oy = (rand()&31)-16;

for (dy = y; dy < y+T; dy++)
for (dx = x; dx < x+T; dx++)
{ nx = dx+ox; ny = dy+oy;

if (nx >= DEF_X || ny >= DEF_Y
|| nx < 0 || ny < 0)

continue;
New[ny][nx] = Old[dy][dx];

} } }

Routine-5: Melting

See Chapter 4, photo 5. This transfor mation ‘‘melts’’ the image in place. It
does not use the edit buffer new , so the two buffers should not be swapped
after the transfor mation completes.

melting()
{ register int x, y, val, k;

for (k = 0; k < DEF_X*DEF_Y; k++)
{ x = rand()%DEF_X;

y = rand()%(DEF_Y-1);

while (y < DEF_Y-1 && Old[y][x] <= Old[y+1][x])
{ val = Old[y][x];

Old[y][x] = Old[y+1][x];
Old[y+1][x] = val;
y++;

} } }

Routine-6: Making a Matte

Image mattes were used, for instance, to make photos 2 and 19 in Chapter 4.
For a por trait on a fair ly light background, a first approximation of a matte can
be made with the following routine. It will have to be touched up with a normal
paint program. Experiment with different values for G.

#define G 7.5 /* gamma factor */

extern double pow(); /* the C-library routine */
matte()
{ register x, y;

unsigned char lookup[256];

for (x = 0; x < 256; x++)
lookup[x] = (255. * pow(x/255., G)<3.)?255:0;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)

New[y][x] = lookup[Old[y][x]];
}

