
PICO—A PICTURE EDITOR

Gerard J. Holzmann
[AT&T Technical Journal, Vol. 66, No. 2, March/Apr il 1987, pp. 2-13]

Abstract

PICO is an interactive editor for digitized graphic images. Editing
operations are defined in a simple expression language based
on the C language. The editor treats images as an ordered set
of pixel structures stored in two-dimensional arrays. PICO
checks editing commands for syntax, translates them into pro-
grams, optimizes and then executes them, all within a few sec-
onds of run time. The command structure is similar to that of
conventional multifile text editors with options for reading, writing,
and transfor ming digitized images.

INTRODUCTION

On the computer systems in our research center, sev eral hundred megabytes wor th of files are
used to store pictures: synthesized, digitized, gray scale and color images. Some of these
images, for instance, are used in the UNIX® system 9th edition to announce the arrival of com-
puter mail on graphics terminals by showing a small picture of the sender. Each mail portrait is a
48-by-48-bit icon extracted from a digitized black-and-white photo.

Figure 1. Photo of Rob Pike Figure 2. Photo of Peter Weinberger
Referred to as $rob in equations. Referred to as $pjw in equations.

Figures 1 and 2 are unedited photos of Rob Pike and Peter Weinberger that will be used in the
examples that follow. Sev eral hundred similar photos have been digitized. Such a wealth of on-
line image infor mation, of course, invites further ventures into image processing, and creates a
need for fair ly general tools for editing, combining, and transfor ming images. This has lead,
almost as a by-product, to the development of a surpr isingly powerful general-pur pose editor for
digitized images that will be described in this paper.

Typical editing operations on digitized images include:

• Changing contrast or histograms

• Masking, filtering, or enhancing image areas

AT&T Technical Journal 2 March/Apr il 1987

• Merging, fading, scaling, and rotating images.

It is not practical to write a new special-pur pose program for each different type of transfor mation.
Instead, we dev eloped a graphics editor with a simple command language that is powerful
enough to define almost any type of transfor mation. The editor parses user commands, trans-
lates them into optimized code, and executes image transfor mations as programs. The command
language is simple, with defaults defining the most common choices. A transfor mation to make a
negative of a picture with brightness values in the range 0...Z, for example, can be defined in one
statement:

new = Z−old (1)

This is independent of the size of the picture or whether it is in color or in black and white.

The expression above is expanded internally into a small program, which (unoptimized) could be
as follows for a color image.

for (y = 0; y < Y; y++)
for (x = 0; x < X; x++)
{ newred[y*X+x] = 255 − oldred[y*X+x];

newgrn[y*X+x] = 255 − oldgrn[y*X+x];
newblu[y*X+x] = 255 − oldblu[y*X+x];

}

The upper left corner of the image is at the origin of the screen coordinate system, with positive x
pointing to the right and positive y pointing down. X and Y are predefined constants that specify
the current width and height of the image wor k buffer (often 512 pixels). Similarly, the Z we saw
ear lier is a predefined constant that defines the maximum brightness value (often 255).

Rotating the image by 90° is only slightly more complicated:

new[x,y] = old[y,x] (2)

The editor again will fill in the details. Equation (2), however, not only rotates, but also mirrors the
or iginal. More accurately, therefore, we should say:

new = old[y,X−x] (3)

for a rotation by 90° clockwise. To rotate counterclockwise, we write:

new = old[Y−y,x] (4)

X and Y are predefined constants that specify the current width and height of the image wor k
buffer (often 512 pixels).

Rotation by an arbitrar y angle can be achieved by using built-in procedures for changing between
polar and Cartesian coordinates. For example, a rotation by 30° clockwise can be written as fol-
lows using two global var iables r and a:

new = old[x_cart(r = r_polar(x,y),a = (a_polar(x,y) + 30)),y_cart(r,a)] (5)

Nor mally, we have to insure that the array indexes fall within the bounds X and Y. In this case, the
procedures x_cart and y_cart take care of that internally. Note also that the statement above
relies on the order of evaluation of the arguments in the compiled code.

Not all operations have to refer to the old or new picture arrays. Any syntactically correct state-
ment is by default executed once for each pixel in the image, with the appropriate settings of the
coordinate var iables x and y. To overr ule this default, it is sufficient to enclose the statement in
cur ly braces. The two global var iables r and a used in Equation (5), for example, can be
declared as follows:

{ global int r, a; }

To declare a global array of 256 integers initialized to zeros, we write:

March/Apr il 1987 3 AT&T Technical Journal

{ global array histo[256]; }

The declaration prefix global extends the scope of array histo so that it can be referred to in
subsequent procedures, programs, or expressions. Using the default loop and C syntax, we can
now make a histogram of the current image by simply typing:

histo[old]++

Array old is by default indexed with the current values of x and y and, for a black and white
image, retur ns a brightness value between 0 and 255. The brightness of a pixel in a color image
is defined by three bytes, which in this case would first be averaged by PICO to obtain a single-
byte index. (See Structure.) The value returned by old is used to select an element in array
histo that is incremented. The statement (expanded into a loop over 512 by 512 pixels) is
executed in eight seconds on a Digital Equipment Corporation VAX-750 computer. After the
statement is executed, array histo can be used straightforwardly to change the brightness val-
ues of the original image (to enhance contrast, for example) or to improve the separation of the
gray-scale values within the image (by histogram equalization).

Figure 3. Average of $rob and $pjw (Eq. 7).

THE PICO EDITOR

The editor that interprets expressions such as the above was named ‘‘PICO.’ ’ (Or iginally the
name indicated its size; later it was more easily understood as an abbreviation of ‘‘picture compo-
sition.’’)

To the editor, a picture is merely an ordered set of pixel structures stored in a two-dimensional
array. Each pixel structure defines brightness values for up to three channels: one for each of the
pr imary colors red, green, and blue. The wor k buffer of the editor is restricted to a maximum win-
dow in the picture being edited of 512 by 512 pixels. The editor stores up to three bytes per pixel,
or up to 786,432 bytes for each image opened for editing.

The result of the last edit operation perfor med is accessible under the predefined name old. An
edit operation is an assignment of new values to elements in the old pixel array. The result of
the assignment is stored in a second pixel array named new. At the end of each edit operation,
the pixel arrays pointed to by old and new are swapped.

The assignments may be based on pixel coordinates, var iables, old pixel values, or arbitrar y ar ith-
metic combinations of these. Equations (1) to (5) are statements that describe more or less stan-
dard edit operations with a single expression. For transfor mations that can not easily be cast into
simple arithmetic expressions, the user can define more explicit editing procedures and programs.

Consider Equation (2). Applied to all pixels, preser ving the distinction between channels, this sin-
gle assignment transposes the old matr ix and assigns the result to pixel array new. For a three-
channel image, it defines a parallel assignment for all x and y.

AT&T Technical Journal 4 March/Apr il 1987

Figure 4. Conditional Expression. Figure 5. More complex transfor mation.

new[x,y].red = old[y,x].red
new[x,y].grn = old[y,x].grn (6)
new[x,y].blu = old[y,x].blu

Names preceded by a dollar sign refer to picture files, with full path names abbreviated to base
names (i.e., "/usr/gerard/pico/pjw" is referred to as "$pjw"). An average of the two pic-
tures $rob and $pjw (Figures 1 and 2) can then be expressed as a matrix operation (Figure 3).

new = ($rob + $pjw)/2 (7)

Or similarly,

new = ($rob * $pjw)/Z (8)

Both of these are unconditional and apply to all pixels, again by default preserving the distinction
between channels and matching pixels found at equal coordinates in the arrays.

Because each transfor mation expression is by default executed once for each pixel of the image,
PICO contains an optimizing compiler that translates the expressions ‘‘on-the-fly’’ (interactively)
into efficient code for the VAX-750 computer.

Consider the following edit session in which ‘‘%’’ is a system prompt. Each number followed by a
colon is PICO’s prompt for a new editing command.

% pico
1: a "/tmp/image/rob"
2: a "/usr/gerard/pico/pjw"
3: x new = (x<256) ? ($rob+$pjw)/2 : Z−$pjw
4: x new = old[x, Y−y] } (9)
5: w output
6: q
%

Each command consists of a single leading character that identifies the type of operation to be
perfor med:

• a to attach (open) new image files

• x to execute transfor mations

• w to write a file

• q to quit the editor.

There can be zero or more arguments for each operation to fill in details. The range in the first x
command above [line 3 of Equation (9)] is defined in a C-style conditional expression of the for m

March/Apr il 1987 5 AT&T Technical Journal

Figure 6. Equation 11. Figure 7. Equation 13.

(condition) ? (iftrue) : (iffalse).

The expression defines an average of two images for all pixels with an x-coordinate less than 256
(i.e., the left-most 256 columns of the pixel array) and a negative of one of the pictures for all
other pixels. (Compare with Figure 4.)

Line 4 simply turns the picture upside down; Y is the predefined constant for the height of the cur-
rent image. Similar ly, X gives the maximum x value, so we can fade $rob slowly into $pjw by
wr iting a nested conditional (Figure 5):

new = (x < X/3)?$rob: (x > X * 2/3)?$pjw: 3 * ((x−X/3) * $pjw + (X * 2/3−x) * $rob)/X (10)

This expression language turns out to be a powerful editing tool. In PICO, all arithmetic and
Boolean operators from C have been implemented, allowing seemingly nonsensical transfor ma-
tions such as those created by the following. [Equations (11), (13), and (14) produce the photos
shown in Figures 6, 7, and 8 respectively. Some of these illustrations were colorized separately
using PICO.]

new = xy $rob. (11)
new = ($rob > 100)?$rob: $pjw (12)

new = $rob[x + (64−((x&15)−8) * ((x&15)−8))/8,y] (13)
new = $pjw[x + (64−($rob&15) * *2)/8,y + (64−(($rob >> 4)&15) * *2)/8] (14)

These transfor mations can produce startling effects. Equation (14), for example, distor ts pjw’s
por trait by somewhat arbitrar ily smear ing pixels, using a second portrait to calculate indices. (The
operator ∗∗ in (14) is for exponentiation.)

STRUCTURE

Figure 9 shows how PICO is structured. Commands are either global operations that affect
PICO’s environment (such as attaching or deleting files) or transfor mation expressions. A parse
tree for a transfor mation is passed to an optimizing compiler that generates machine code. The
code is then executed, and typically completes within a few seconds. The result of the edit opera-
tion is shown on a monitor (if available), and the user is prompted for another command.

COLORS, COMPOSITES, AND TYPES

A pixel is not, in most cases, defined by a single brightness value but a composite of three colors.
A composite is written in PICO as a comma-separated list of subexpressions enclosed in square
brackets:

[red, grn, blu]

AT&T Technical Journal 6 March/Apr il 1987

Figure 8. Equation 14. Figure 9. PICO Structure.

Red, grn, and blu are again predefined terms that can be used as suffixes to pixel array
names or file names. For example:

new.red, old[x,y].red, $pjw.grn, ... etc.

Where necessary, PICO perfor ms casting operations to match the types of the var ious par ts in an
assignment. For example, if the left-hand side of an expression is a value and the right-hand side
a composite, the value is promoted to a composite before the assignment is perfor med.

With composites, we can readily rotate the colors in an image with a single assignment

new = [old.blu,old.red,old.grn] (15)

The expression

new.red = Z−old.blu (16)

assigns a negative of the old blue component in the picture to the red field of each pixel. Both
sides of the assignment are noncomposite, so no type casting is perfor med. However, the
expression

new.red = old (17)

casts the composite old into a single value, the average of the three color components, so that
the above expression is interpreted as

new.red = (old.red + old.grn + old.blu)/3 (18)

The reverse

new = old.grn (19)

requires type promotion and is interpreted as

new = [old.grn,old.grn,old.grn] (20)

PICO PROCEDURES

For nonstandard editing operations that can not easily be expressed in the language described
above , there is a facility in PICO to declare named segments of code and use these as proce-
dures. In the following edit script, a procedure that draws a circle of radius r is first declared and
then called with argument 200.

March/Apr il 1987 7 AT&T Technical Journal

Figure 10. Random Lines. Figure 11. Random Slicing.

% pico
1: def circle(r)
{ int a

for (a = 0; a < 360; a++)
new[x_cart(r, a), y_cart(r, a)] = Z

}
3: x { circle(200); }
4:

There is one var iable a declared local to the procedure circle. Statements are separated by
new lines and/or semicolons. The function call in line 3 should only be executed once, and not by
default once for every pixel. A statement, or a sequence of statements enclosed in curly braces,
is taken to be an explicit PICO program defining its own control flow and is executed just once.
Note that the code segment in curly braces that defines procedure circle is preceded by the
keyword def. It is not executed, just compiled.

Procedures can be recursive. The following procedure, for example, approximates a straight line:

def line(x1, y1, x2, y2)
{ if (abs(x1 − x2) > 1 || abs(y1 − y2) > 1)

{ line(x1, y1, (x1+x2)/2, (y1+y2)/2)
line((x1+x2)/2, (y1+y2)/2, x2, y2)

} else
new[x1,y1] = 255

}

But we can do much better. The following set of procedures, written by Rob Pike of AT&T Bell
Laborator ies, made the cover of the November 1985 issue of Computer Graphics. The program
draws n random lines on the display. Procedure line selects lines of pixels from the image of
pjw randomly var ying their intensity. Procedure draw calls librar y procedure rand() to select
the parameters for line. (A color version of draw was run superimposed on $rob’s picture in
Figure 10.)

AT&T Technical Journal 8 March/Apr il 1987

Figure 12. Equation 21. Figure 13. Edge Detection.

def xline(a0, b0, a1, b1)
{

int a, b
int r
r=255−(rand()&127)
for (a=a0; a<a1; a++)
{

b=b0+(b1−b0)*(a−a0)/(a1−a0)
new[a, b] = $pjw[a, b]*r/255

}
}

def yline(a0, b0, a1, b1)
{

int a, b
int r
r=255−(rand()&127)
for (b=b0; b<b1; b++)
{

a=a0+(a1−a0)*(b−b0)/(b1−b0)
new[a, b] = $pjw[a, b]*r/255

}
}

March/Apr il 1987 9 AT&T Technical Journal

def line(a0, b0, a1, b1)
{

if(abs(a1−a0)>abs(b1−b0))
{ if(a0>a1)

xline(a1, b1, a0, b0)
else

xline(a0, b0, a1, b1)
} else
{ if(b0>b1)

yline(a1, b1, a0, b0)
else

yline(a0, b0, a1, b1)
}

}

def draw(n)
{

int a
for (a = 0; a < n; a++)

line(rand()&511, rand()&511, rand()&511, rand()&511)
}

Another inspiring procedure is shown below. (See results in Figure 11.)

def xy_slicer()
{ int r

array yshift[512]
for (y = 0; y < 512; y++)
{

if (rand() < 2000)
r=(rand()&63)−32

yshift[y] = r
}
for (y = 0; y<512; y++)
{

if (rand() < 2000)
r=(rand()&63)−32

for (x = 0; x<512; x++)
new[x,y] = old[clamp(x+r), clamp(y+yshift[x])]

}
}

Clamp is a built-in function defined as follows:

clamp(a)
{

return ((a < 0)?0:((a>511)?511:a));
}

QUICK EDGE DETECTION

As a more serious application of the PICO picture editor, consider the following method to extract
edges quickly and interactively from a black-and-white image. One method is to add positive and
negative, with a small offset of perhaps two pixels in the x and the y direction (Figure 12):

new = $rob[x,y] + (Z−$rob[x + 2,y + 2]) (21)

A slightly more sophisticated method is to smooth the image first with a moving average. (We will

AT&T Technical Journal 10 March/Apr il 1987

ignore here that the moving average can be calculated a factor of N2 faster.)

def smooth(N)
{

int a, b, c
int N2

N2 = 4*N*N
for (y = N; y < 512−N; y++)
for (x = N; x < 512−N; x++)
{

c = 0
for (a = y−N; a < y+N; a++)
for (b = x−N; b < x+N; b++)

c += old[b, a]

new[x,y] = c/N2
}

}

This is followed by a quick approximation of the Laplacian ∇2

def laplace()
{

int a

for (y = 0; y < 512; y++)
for (x = 0; x < 512; x++)
{
a = 5*old[x,y]−old[x−1,y]−old[x+1,y] −old[x,y−1]−old[x,y+1]
new[x,y] = (old[x,y] > a)?0:Z

}
}

These two procedures can now be applied as follows (Figure 13):

% pico
1: x new=$rob
2: x { smooth(10); laplace(); }
3:

Figures 14 and 15 show the intriguing results of the following transfor mation applied to two por-
traits from our database (Al Aho and Doug McIlroy).

new = old[x_cart(r = sqrt(256 * r_polar(x,y)),a = a_polar(x,y)),y_cart(r,a)] (22)

PICO is most conveniently used interactively with a frame buffer display to show the result of each
editing operation. Nevertheless, it can also be used without a display. The contents of the edit
buffer can then, from time to time, be dumped into a picture file and, using halftoning, be dis-
played on a more standard graphics terminal such as the AT&T 5620 DMD (dot-mapped display
ter minal). At the time this article was written, two types of frame buffers were supported by PICO.
The number is likely to increase when different types become available.

March/Apr il 1987 11 AT&T Technical Journal

Figure 14. Equation 22. Figure 15. Equation 22.

Table I. Run Times

Tr ansfor mation Inter preter Compiler Int/Com

new=128 23.6s 5.3s 4.4

new=$pjw 43.3s 5.9s 7.3

new=Z−old 59.9s 6.5s 9.2

new=($pjw+$rob)/2 105.9s 9.3s 11.4

new=(x<256)?$pjw:$rob 107.7s 7.2s 14.9

new=($pjw<128)?Z−$pjw : $pjw[X−x,y] 304.5s 10.8s 28.2

SPEED

To make PICO truly useful as an interactive program, the execution speed of the transfor mations
is, of course, a major concern. A statement such as new = Z−old for a color image (requiring
786,4321 values to be updated) takes 27.7s to execute. The same statement run for a black-and-
white image takes 6.5s. By default, however, PICO will update the frame buffer display dur ing the
execution, which slows it down but is often psychologically more rewarding than the faster blind
run.

The first version of PICO used an interpreter instead of a compiler. It is a small, portable program
of only 312 lines of source text (Yacc, Lex, and C code), compared to the 5,761 lines of source for
the latest version. The inter preter itself is 39 lines of C, simple, but without claims on efficiency.
The differences in speed between this program and the version of PICO with the built-in optimiz-
ing compiler can be dramatic. Table I lists a few examples, giving user plus system times on a
VAX-750 computer, for transfor mations of 512 by 512 black-and-white images.

Because each expression is evaluated once for every pixel, even small differences in run time per
pixel are noticeable when the expression is evaluated 262,144 times over. Portable PICO (popi)
has been ported to an AT&T PC 6300 PLUS personal computer and to a Cray X-MP/24 super-
computer. On any other system than a Cray, the portable version of PICO is clearly not ver y
attractive as an interactive tool.

CONCLUSION

We have sketched the design of a language and an editor for transfor ming digitized images. The
editor has proven to be a useful tool for quickly testing or explor ing image transfor mation

AT&T Technical Journal 12 March/Apr il 1987

techniques, providing a simple alternative to the often ver y costly commercial image processing
systems.

PICO’s expression language is largely derived from the C language. The most interesting
aspects of the language are the defaults for control flow, array indexing, and type casting, that
allow for a terse command structure. There are, of course, limitations. The language as imple-
mented does not use floating-point operations. With an extension of the compiler, though, this
restr iction can be overcome. A more fundamental restriction is that the editor is an image manip-
ulator, and is clumsy for image synthesis. PICO is an electronic darkroom, not a graphics cam-
era.

ACKNOWLEDGEMENTS

The design of PICO’s command language was decisively influenced by Rob Pike. The all-impor-
tant built-in compiler that converts expressions and programs into VAX machine code, and
thereby speeds up PICO’s picture transfor mations by orders of magnitude, was written by Ken
Thompson.

(Manuscr ipt received May 28, 1986)

Author Biography

Gerard J. Holzmann is a member of the technical staff in the Computing
Techniques Research Department of AT&T Bell Laborator ies in Murray
Hill, New Jersey. Mr. Holzmann joined AT&T in 1980. His current
research is in distributed systems and for mal methods for protocol analy-
sis. He holds B.S. and M.S. degrees in electrical engineering from Delft
University of Technology, The Netherlands, and a Ph.D. in technical sci-
ences from Delft University of Technology.

March/Apr il 1987 13 AT&T Technical Journal

FIGURE CAPTIONS

Figure 1. Photo of Rob Pike, unedited. Referred to as $rob in
equations and text.

Figure 2. Photo of Peter J. Weinberger, unedited. Referred to as
$pjw.

Figure 3. Photo created by average of $rob and $pjw. [See
Equation (7).]

Figure 4. Photo resulting from simple conditional expression.
new = ($pjw<128) ? Z−$pjw : $pjw[X−x,y]

Figure 5. Photo showing more complex mapping and merging of
two images.

def newy() { return clamp(4*y/3−75); }
{ global int R,L,yy;R = X/3;L = 2*X/3;}
new = (x < R) ? $rob[x,yy=newy()]: \

(x > L) ? 2*$pjw/3: \
3*((x−R)*2*$pjw/3+(L−x)*$rob[x,yy])/X

[Compare with Equation (10).]

Figure 6. Exclusive or operation of x, y, and $rob. [See Equa-
tion (11).]

Figure 7. Tr ansfor mation. [See Equation (13).]

Figure 8. Pixel smearing. [See Equation (14).]

Figure 9. Diagram of PICO’s inter nal str ucture.

Figure 10. Photo with random lines, using $rob and $pjw.

Figure 11. Photo with random slicing, using $rob.

Figure 12. Photo with simple relief. [See Equation (21).]

Figure 13. Photo demonstrating edge detection, using $rob.

Figure 14. Car icature mapping using the following expression.

new=old[x_cart(r=sqrt(256*r_polar(x,y)), \
a=a_polar(x,y)),y_cart(r,a)]

Figure 15. Car icature mapping.

